Chapter 3 Problems

Chapter 3 Problems

1

FBD - Runner
The moment arm on our gravity force will equal cos(30)(0.3m)\cos(30^\circ)(0.3\text m), so to balance our torques, we have (.02m)Ftendon=cos(30)(0.3m)(3kg)(9.81m/s2).(.02\text m)F_\text{tendon} = \cos(30^\circ)(0.3\text m)(3\text{kg})\left(9.81\text{m/s}^2\right). Isolating the petella force here gives Ftendon=cos(30)(0.3m)(3kg)(9.81m/s2).02m=382.3N.F_\text{tendon} = \frac{\cos(30^\circ)(0.3\text m)(3\text{kg})\left(9.81\text{m/s}^2\right)}{.02\text m} = \boxed{382.3\text N}.

2

A.

FBD - Runner

B. The moment arm of the COM will be sin(60)(.35m)\sin(60^\circ)(.35\text m), and the moment arm of the dumbell will be sin(60)(.7m)\sin(60^\circ)(.7\text m). Therefore, their combined torques will be sin(60)(.35m)(5kg)(9.81m/s2)+sin(60)(.7m)(7kg)(9.81m/s2).\sin(60^\circ)(.35\text m)(5\text{kg})\left(9.81\text{m/s}^2\right) + \sin(60^\circ)(.7\text m)(7\text{kg})\left(9.81\text{m/s}^2\right). Setting the total torque equal to zero gives (.02m)Fdeltoid=sin(60)(.35m)(5kg)(9.81m/s2)+sin(60)(.7m)(7kg)(9.81m/s2).(.02\text m)F_\text{deltoid} = \sin(60^\circ)(.35\text m)(5\text{kg})\left(9.81\text{m/s}^2\right) + \sin(60^\circ)(.7\text m)(7\text{kg})\left(9.81\text{m/s}^2\right). Isolatin the deltoid force gives Fdeltoid=sin(60)(.35m)(5kg)(9.81m/s2)+sin(60)(.7m)(7kg)(9.81m/s2).02m=2824.8N.F_\text{deltoid} = \frac{\sin(60^\circ)(.35\text m)(5\text{kg})\left(9.81\text{m/s}^2\right) + \sin(60^\circ)(.7\text m)(7\text{kg})\left(9.81\text{m/s}^2\right)}{.02\text m} = \boxed{2824.8\text N}.

C. The force of the deltoid is being applied at 1010^\circ less than the 6060^\circ humerus, or in other words at 5050^\circ from vertical, the xx-component of FdeltoidF_\text{deltoid} will be sin(50)2824.8N=2163.9N\sin(50^\circ)2824.8\text N = 2163.9\text N and the yy-component will be cos(50)2824.8N.\cos(50^\circ)2824.8\text N. Since the total force in the yy direction is cos(50)2824.8N(5kg)(9.81m/s2)(7kg)(9.81m/s2)=1698.0N,\cos(50^\circ)2824.8\text N - (5\text{kg})\left(9.81\text{m/s}^2\right) - (7\text{kg})\left(9.81\text{m/s}^2\right) = 1698.0\text N, the joint reaction force is JRF=(2163.9N1698.0N)\text{JRF} = \begin{pmatrix}2163.9\text N \\ 1698.0\text N\end{pmatrix}

D. The xx component of the latissimus force would add to the deltoid, but the yy component would subtract. The JRF would increase overall, but there would be less superior translation of the humerus, likely leading to greater joint stability.

3

A.

FBD - Runner

B. The moment arm of the ground reaction force will be sin(30)(.1m)=.05m,\sin(30^\circ)(.1\text m) = .05\text m, and the moment arm of the peroneus will be sin(40)(.1m).064m.\sin(40^\circ)(.1\text m) \approx .064\text m.

C. If the net torque is zero, then sin(30)(.1m)(1500N)=sin(40)(.1m)(1800N)+(.01m)(FCFL).\sin(30^\circ)(.1\text m)(1500\text N) = \sin(40^\circ)(.1\text m)(1800\text N) + (.01\text m)(\text F_\text{CFL}). Rearranging gives FCFL=sin(30)(.1m)(1500N)sin(40)(.1m)(1800N).01m=4070.2N.F_\text{CFL} = \frac{\sin(30^\circ)(.1\text m)(1500\text N) - \sin(40^\circ)(.1\text m)(1800\text N)}{.01\text m} = \boxed{4070.2\text N}.

D. No, the force of 4070.2N4070.2\text N does not exceed 5000N5000\text N.

E.

F.