Chapter 2 Problems

Chapter 2 Problems

1.

Problem Statement 1
problem 1 PNG

Solution:

First, let’s break down the forces into xx and yy components. If we let positive xx be to the right, then we see that “you” are pushing at an angle of 200200^\circ counter-clockwise from positive xx, while “friend” is pusing at an angle of 135135^\circ counter-clockwise from positive xx. Therefore, we have youx=350N(cos200)329N,youy=350N(sin200)120N,friendx=450N(cos135)318N,friendy=450N(sin135)318N.\begin{align*} \text{you}_x &= 350\text N (\cos 200^\circ) \approx -329\text N, \\ \text{you}_y &= 350\text N (\sin 200^\circ) \approx -120\text N, \\ \text{friend}_x &= 450\text N (\cos 135^\circ) \approx -318\text N, \\ \text{friend}_y &= 450\text N (\sin 135^\circ) \approx 318\text N. \end{align*} From this, we get the resultant force Fx329N318N=647N,Fy120N+318N=198N.\begin{align*} \text{F}_x &\approx -329\text N -318\text N = -647\text N, \\ \text{F}_y &\approx -120\text N + 318\text N = 198\text N. \end{align*} Comparing this to the force of friction, we see that a 145 kg mass will produce a weight force of 145 kg(9.8 m/s2)=1421N145 \text{ kg}\left(9.8 \text{ m/s}^2\right) = 1421\text N, so the maximun magnitude of our friction force will be 0.45(1421N)639N0.45(1421\text N) \approx 639 \text N. Since this is less than our resultant force, yes, it will move.\boxed{\text{yes, it will move.}}

2.

Problem Statement 2
problem 1 PNG

Solution:

FBD - Runner

We are given the mass of the skier, the angle of the slope, the magnitude and direction of air resistance, the dynamic friction between skis and snow, and are asked to calculate the resultant force assuming the skier is sliding straight down the slope. Let the xx-axis be parallel to the slope, with the skier traveling in the positive xx direction. Now, since we are told that the skier is traveling straight down the slope, we know that the acceleration (and therefore net force) along the yy-axis must be zero, so we solve for the xx compontents of our three forces: gravity, friction, and air resistance.

The force of gravity on the skier will act 3030^\circ from the yy-axis in the fourth cartesian quadrant, or 300300^\circ from the xx-axis. Therefore, its xx component will be 60 kg(9.8 m/s2)(cos300)=294N.60\text{ kg}\left(9.8\text{ m/s}^2\right)\left(\cos 300^\circ\right) = 294\text N. and its yy component will be 60 kg(9.8 m/s2)(sin300)509.2N.60\text{ kg}\left(9.8\text{ m/s}^2\right)\left(\sin 300^\circ\right) \approx -509.2\text N. Since the normal force from the ground will be equal in magnitude to this yy component, the force of surface friction will be 0.08(509.2N)40.7.0.08(-509.2\text N) \approx -40.7. Combining these with the air friction of 10N10\text N gives the resultant force 294N40.7N10N=243.3N294\text N - 40.7\text N - 10\text N = 243.3\text N in the positive xx direction, or 243.3N at 30 below horizontal\boxed{243.3\text N \text{ at }30^\circ \text{ below horizontal}} .

3.

Problem Statement 3
problem 1 PNG

Solution:

FBD - Runner

Let the yy-axis be parallel to the tibia, so that the xx component of our resultant force equals the shear force, and the yy component equals the compressive force. Let the femur be 6060^\circ counter-clockwise from the positive xx-axis (so that positive xx is posterior and positive yy is superior). Now, in degrees counter-clockwise from positive xx, we have the force of the gastroc at 8787^\circ, force of hamstrings at 6060^\circ, and force of quadriceps at 105105^\circ.
Therefore, the force of the gastroc is gastrocx=780N(cos87)40.8N,gastrocy=780N(sin87)778.9N,\begin{align*} \text{gastroc}_x &= 780\text N (\cos 87^\circ) \approx 40.8\text N, \\ \text{gastroc}_y &= 780\text N (\sin 87^\circ) \approx 778.9\text N, \end{align*} the force of the hamstrings is hamstringsx=790N(cos60)=395N,hamstringsy=790N(sin60)684.2N,\begin{align*} \text{hamstrings}_x &= 790\text N (\cos 60^\circ) = 395\text N, \\ \text{hamstrings}_y &= 790\text N (\sin 60^\circ) \approx 684.2\text N, \end{align*} and the force of the quadriceps is quadricepsx=1650N(cos105)427.1N,quadricepsy=1650N(sin105)1593.8N.\begin{align*} \text{quadriceps}_x &= 1650\text N (\cos 105^\circ) \approx -427.1\text N, \\ \text{quadriceps}_y &= 1650\text N (\sin 105^\circ) \approx 1593.8\text N. \end{align*} Summing these up, we have our resultant force as resultantx40.8N+395N427N=8.8N,resultanty778.9N+684.2N+1593.8N=3056.9N.\begin{align*} \text{resultant}_x &\approx 40.8\text N + 395\text N - 427\text N = 8.8\text N, \\ \text{resultant}_y &\approx 778.9\text N + 684.2\text N + 1593.8\text N = 3056.9\text N. \end{align*} Therefore, we have compression=3056.9N\boxed{\text{compression} = 3056.9\text N} and shear=8.8N\boxed{\text{shear} = 8.8\text N} .